Article ID Journal Published Year Pages File Type
5147741 International Journal of Hydrogen Energy 2017 6 Pages PDF
Abstract
A real textile desizing wastewater (TDW) was coagulation-pretreated to enhance its potential of biohydrogen production. Batch fermentation showed that the hydrogen production was efficiently enhanced (550 and 120% increments for hydrogen production rate and hydrogen yield, respectively) and the production performance was substrate-concentration dependent. A peak hydrogen production rate of 3.9 L/L-d and hydrogen yield of 1.52 mol/mol hexose were obtained while using coagulant GGEFloc-653 at a dosage of 1 g/L to pretreat TDW with the concentration of 15 g total sugar/L. The coagulation-pretreatment could have butyrate-type fermentation with high biohydrogen production and the removed some toxic materials that might drive the metabolic pathways to those not favoring biohydrogen production. Based on the data obtained, strategies to operate the coagulation and biohydogen fermentation are suggested. Moreover, fermentation effluent utilization such as for two-stage biogas production and further biohythane (a mixture of H2 and CH4) generation are also elucidated.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,