Article ID Journal Published Year Pages File Type
5148300 International Journal of Hydrogen Energy 2017 10 Pages PDF
Abstract
Fuel cell stack compression is a vital part of the manufacturing process, however limited research exists in predicting the optimal compression force to maximise fuel cell performance. This paper validates a spring equivalent model proposed in a previous publication which, when coupled with literature derived gas diffusion layer (GDL) optimal compression data, can predict the compression force required based on gas diffusion layer and gasket properties. The error between the model and the optimal performance of the stack is a maximum of 6.4%. This is a positive indication as to the model's validity. In addition, the compression homogeneity applied by the compression system to the flow field plate is measured to confirm the GDL is experiencing the predicted compression force. The impact of this research is a reduction in development time and cost as less empirical testing will be required to identify optimal fuel cell stack compression.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , ,