Article ID Journal Published Year Pages File Type
5148301 International Journal of Hydrogen Energy 2017 11 Pages PDF
Abstract
Direct borohydride/peroxide fuel cells (DBPFCs) show progressively deteriorating performance during operation for various reasons such as decreasing reactant concentrations, gas evolution and uneven distribution of liquids. The present study aims to emphasize the importance of certain design parameters, such as bipolar plate materials, flow fields and manifold design, in determining the DBPFC performance. Bipolar materials and flow channel design have been investigated. A power density of 67 mW cm−2 has been obtained with composite graphite and parallel flow channel bipolar plates. It has increased to 87 mW cm−2 using sintered graphite and then to 93.3 mW cm−2 using sintered graphite with serpentine flow fields. The stacking of DBPFCs results in a loss of performance and unstable output. The performance has remained nearly unchanged as the cell number was increased by applying an independent cell liquid distribution network (ICLDN). Using an ICLDN, power densities of 98.3, 83.3 and 82 mW cm−2 have been obtained for single-cell, 3-cell and 6-cell stacks, respectively. Finally, a controlled oxidant feeding system (COFS) has been developed to provide stable output power, and it has demonstrated a stable output power of 6 W for 2.5 h.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , , , ,