Article ID Journal Published Year Pages File Type
515071 Information Processing & Management 2009 14 Pages PDF
Abstract

Many machine learning algorithms have been applied to text classification tasks. In the machine learning paradigm, a general inductive process automatically builds a text classifier by learning, generally known as supervised learning. However, the supervised learning approaches have some problems. The most notable problem is that they require a large number of labeled training documents for accurate learning. While unlabeled documents are easily collected and plentiful, labeled documents are difficultly generated because a labeling task must be done by human developers. In this paper, we propose a new text classification method based on unsupervised or semi-supervised learning. The proposed method launches text classification tasks with only unlabeled documents and the title word of each category for learning, and then it automatically learns text classifier by using bootstrapping and feature projection techniques. The results of experiments showed that the proposed method achieved reasonably useful performance compared to a supervised method. If the proposed method is used in a text classification task, building text classification systems will become significantly faster and less expensive.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,