Article ID Journal Published Year Pages File Type
515135 Information Processing & Management 2010 21 Pages PDF
Abstract

Typically graph-clustering approaches assume that a cluster is a vertex subset such that for all of its vertices, the number of links connecting a vertex to its cluster is higher than the number of links connecting the vertex to the remaining graph. We consider a cluster such that for all of its vertices, the number of links connecting a vertex to its cluster is higher than the number of links connecting the vertex to any other cluster. Based on this fundamental view, we propose a graph-clustering algorithm that identifies clusters even if they contain vertices more strongly connected outside than inside their cluster; hence, the proposed algorithm is proved exceptionally efficient in clustering densely interconnected graphs. Extensive experimentation with artificial and real datasets shows that our approach outperforms earlier alternate clustering techniques.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,