Article ID Journal Published Year Pages File Type
515935 Information Processing & Management 2009 19 Pages PDF
Abstract

This paper describes our experiments on automatic parameter optimization for the Japanese monolingual retrieval task. Unlike regression approaches, we optimized parameters completely independently of retrieval models enabling the optimized parameter set to illustrate the characteristics of the target test collections. We adopted genetic algorithms as optimization tools and cross-validated with four test collections, namely the CLIR-J-J collections for NTCIR-3 to NTCIR-6. The most difficult retrieval parameters to optimize are the feedback parameters, because there are no principles for calibrating them. Our approach optimized feedback parameters and basic scoring parameters at the same time. Using test sets and validation sets, we achieved effectiveness levels comparable with very strong baselines, i.e., the best-performing NTCIR official runs.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
,