Article ID Journal Published Year Pages File Type
518089 Journal of Computational Physics 2015 14 Pages PDF
Abstract

The analytic form of a new class of factorized Runge–Kutta–Chebyshev (FRKC) stability polynomials of arbitrary order N   is presented. Roots of FRKC stability polynomials of degree L=MNL=MN are used to construct explicit schemes comprising L   forward Euler stages with internal stability ensured through a sequencing algorithm which limits the internal amplification factors to ∼L2∼L2. The associated stability domain scales as M2M2 along the real axis. Marginally stable real-valued points on the interior of the stability domain are removed via a prescribed damping procedure.By construction, FRKC schemes meet all linear order conditions; for nonlinear problems at orders above 2, complex splitting or Butcher series composition methods are required. Linear order conditions of the FRKC stability polynomials are verified at orders 2, 4, and 6 in numerical experiments. Comparative studies with existing methods show the second-order unsplit FRKC2 scheme and higher order (4 and 6) split FRKCs schemes are efficient for large moderately stiff problems.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
,