Article ID Journal Published Year Pages File Type
518274 Journal of Computational Physics 2014 29 Pages PDF
Abstract

For unstructured finite volume methods an agglomeration multigrid with an implicit multistage Runge–Kutta method as a smoother is developed for solving the compressible Reynolds averaged Navier–Stokes (RANS) equations. The implicit Runge–Kutta method is interpreted as a preconditioned explicit Runge–Kutta method. The construction of the preconditioner is based on an approximate derivative. The linear systems are solved approximately with a symmetric Gauss–Seidel method. To significantly improve this solution method grid anisotropy is treated within the Gauss–Seidel iteration in such a way that the strong couplings in the linear system are resolved by tridiagonal systems constructed along these directions of strong coupling. The agglomeration strategy is adapted to this procedure by taking into account exactly these anisotropies in such a way that a directional coarsening is applied along these directions of strong coupling. Turbulence effects are included by a Spalart–Allmaras model, and the additional transport-type equation is approximately solved in a loosely coupled manner with the same method. For two-dimensional and three-dimensional numerical examples and a variety of differently generated meshes we show the wide range of applicability of the solution method. Finally, we exploit the GMRES method to determine approximate spectral information of the linearized RANS equations. This approximate spectral information is used to discuss and compare characteristics of multistage Runge–Kutta methods.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
,