Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
518498 | Journal of Computational Physics | 2016 | 30 Pages |
In this study, we propose an adaptive velocity-space discretization scheme for the multi-species, multidimensional Rosenbluth–Fokker–Planck (RFP) equation, which is exactly mass-, momentum-, and energy-conserving. Unlike most earlier studies, our approach normalizes the velocity-space coordinate to the temporally varying individual plasma species' local thermal velocity, vth(t)vth(t), and explicitly considers the resulting inertial terms in the Fokker–Planck equation. Our conservation strategy employs nonlinear constraints to enforce discretely the conservation properties of these inertial terms and the Fokker–Planck collision operator. To deal with situations of extreme thermal velocity disparities among different species, we employ an asymptotic vthvth-ratio-based expansion of the Rosenbluth potentials that only requires the computation of several velocity-space integrals. Numerical examples demonstrate the favorable efficiency and accuracy properties of the scheme. In particular, we show that the combined use of the velocity-grid adaptivity and asymptotic expansions delivers many orders-of-magnitude savings in mesh resolution requirements compared to a single, static uniform mesh.