Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
518597 | Journal of Computational Physics | 2013 | 12 Pages |
In this work a simple method to enforce the positivity-preserving property for general high-order conservative schemes is proposed for solving compressible Euler equations. The method detects critical numerical fluxes which may lead to negative density and pressure, and for such critical fluxes imposes a simple flux limiter by combining the high-order numerical flux with the first-order Lax–Friedrichs flux to satisfy a sufficient condition for preserving positivity. Though an extra time-step size condition is required to maintain the formal order of accuracy, it is less restrictive than those in previous works. A number of numerical examples suggest that this method, when applied on an essentially non-oscillatory scheme, can be used to prevent positivity failure when the flow involves vacuum or near vacuum and very strong discontinuities.