Article ID Journal Published Year Pages File Type
518642 Journal of Computational Physics 2013 13 Pages PDF
Abstract

In this paper we propose a locally conservative Galerkin (LCG) finite element method for two-phase flow simulations in heterogeneous porous media. The main idea of the method is to use the property of local conservation at steady state conditions in order to define a numerical flux at element boundaries. It provides a way to apply standard Galerkin finite element method in two-phase flow simulations in porous media. The LCG method has all the advantages of the standard finite element method while explicitly conserving fluxes over each element. All the examples presented show that the formulation employed is accurate and robust, while using less CPU time than finite volume method.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,