Article ID Journal Published Year Pages File Type
518802 Journal of Computational Physics 2012 24 Pages PDF
Abstract

In this paper, we study the integration of Hamiltonian wave equations whose solutions have oscillatory behaviors in time and/or space. We are mainly concerned with the research for multi-symplectic extended Runge–Kutta–Nyström (ERKN) discretizations and the corresponding discrete conservation laws. We first show that the discretizations to the Hamiltonian wave equations using two symplectic ERKN methods in space and time respectively lead to an explicit multi-symplectic integrator (Eleap-frogI). Then we derive another multi-symplectic discretization using a symplectic ERKN method in time and a symplectic partitioned Runge–Kutta method, which is equivalent to the well-known Störmer–Verlet method in space (Eleap-frogII). These two new multi-symplectic schemes are extensions of the leap-frog method. The numerical stability and dispersive properties of the new schemes are analyzed. Numerical experiments with comparisons are presented, where the two new explicit multi-symplectic methods and the leap-frog method are applied to the linear wave equation and the Sine–Gordon equation. The numerical results confirm the superior performance and some significant advantages of our new integrators in the sense of structure preservation.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,