Article ID Journal Published Year Pages File Type
519088 Journal of Computational Physics 2011 32 Pages PDF
Abstract

A new simulation method for solving fluid–structure coupling problems has been developed. All the basic equations are numerically solved on a fixed Cartesian grid using a finite difference scheme. A volume-of-fluid formulation [Hirt, Nichols, J. Comput. Phys. 39 (1981) 201], which has been widely used for multiphase flow simulations, is applied to describing the multi-component geometry. The temporal change in the solid deformation is described in the Eulerian frame by updating a left Cauchy-Green deformation tensor, which is used to express constitutive equations for nonlinear Mooney–Rivlin materials. In this paper, various verifications and validations of the present full Eulerian method, which solves the fluid and solid motions on a fixed grid, are demonstrated, and the numerical accuracy involved in the fluid–structure coupling problems is examined.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,