Article ID Journal Published Year Pages File Type
519093 Journal of Computational Physics 2011 11 Pages PDF
Abstract

The Dey–Mittra [S. Dey, R. Mitra, A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects, IEEE Microwave Guided Wave Lett. 7 (273) 1997] finite-difference time-domain partial cell method enables the modeling of irregularly shaped conducting surfaces while retaining second-order accuracy. We present an algorithm to extend this method to include charged particle emission and absorption in particle-in-cell codes. Several examples are presented that illustrate the possible improvements that can be realized using the new algorithm for problems relevant to plasma simulation.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , , , , , , , ,