Article ID Journal Published Year Pages File Type
519389 Journal of Computational Physics 2011 20 Pages PDF
Abstract

OSHUN is a parallel relativistic 2D3P Vlasov–Fokker–Planck code, developed primarily to study electron transport and instabilities pertaining to laser-produced—including laser-fusion—plasmas. It incorporates a spherical harmonic expansion of the electron distribution function, where the number of terms is an input parameter that determines the angular resolution in momentum-space. The algorithm employs the full 3D electromagnetic fields and a rigorous linearized Fokker–Planck collision operator. The numerical scheme conserves energy and number density. This enables simulations for plasmas with temperatures from MeV down to a few eV and densities from less than critical to more than solid. Kinetic phenomena as well as electron transport physics can be recovered accurately and efficiently.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,