Article ID Journal Published Year Pages File Type
519474 Journal of Computational Physics 2011 19 Pages PDF
Abstract

A finite volume numerical technique is proposed to solve the compressible ideal MHD equations for steady and unsteady problems based on a quasi-Newton implicit time integration strategy. The solenoidal constraint is handled by a hyperbolic divergence cleaning approach allowing its satisfaction up to machine accuracy. The conservation of the magnetic flux is computed in a consistent way using the numerical flux of the finite volume discretization. For the unsteady problem, the time accuracy is obtained by a Newton subiteration at each physical timestep thereby converging the solenoidal constraint to steady state. We perform extensive numerical experiments to validate and demonstrate the capabilities of the proposed numerical technique.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,