Article ID Journal Published Year Pages File Type
519579 Journal of Computational Physics 2016 19 Pages PDF
Abstract

A new manifold-based reduced order model for nonlinear problems in multiscale modeling of heterogeneous hyperelastic materials is presented. The model relies on a global geometric framework for nonlinear dimensionality reduction (Isomap), and the macroscopic loading parameters are linked to the reduced space using a Neural Network. The proposed model provides both homogenization and localization of the multiscale solution in the context of computational homogenization. To construct the manifold, we perform a number of large three-dimensional simulations of a statistically representative unit cell using a parallel finite strain finite element solver. The manifold-based reduced order model is verified using common principles from the machine-learning community. Both homogenization and localization of the multiscale solution are demonstrated on a large three-dimensional example and the local microscopic fields as well as the homogenized macroscopic potential are obtained with acceptable engineering accuracy.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,