Article ID Journal Published Year Pages File Type
519844 Journal of Computational Physics 2012 19 Pages PDF
Abstract

Development of optimal reduced-order models for linearized Euler equations is investigated. Recent methods based on proper orthogonal decomposition (POD), applicable for high-order systems, are presented and compared. Particular attention is paid to the link between the choice of the projection and the efficiency of the reduced model. A stabilizing projection is introduced to induce a stable reduced-order model at finite time even if the energy of the physical model is growing. The proposed method is particularly well adapted for time-dependent hyperbolic systems and intrinsically skew-symmetric models. This paper also provides a common methodology to reliably reduce very large nonsymmetric physical problems.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,