Article ID Journal Published Year Pages File Type
520010 Journal of Computational Physics 2010 17 Pages PDF
Abstract

A spectrally accurate method for the fast evaluation of N-particle sums of the periodic Stokeslet is presented. Two different decomposition methods, leading to one sum in real space and one in reciprocal space, are considered. An FFT based method is applied to the reciprocal part of the sum, invoking the equivalence of multiplications in reciprocal space to convolutions in real space, thus using convolutions with a Gaussian function to place the point sources on a grid. Due to the spectral accuracy of the method, the grid size needed is low and also in practice, for a fixed domain size, independent of N. The leading cost, which is linear in N  , arises from the to-grid and from-grid operations. Combining this FFT based method for the reciprocal sum with the direct evaluation of the real space sum, a spectrally accurate algorithm with a total complexity of O(NlogN)O(NlogN) is obtained. This has been shown numerically as the system is scaled up at constant density.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,