Article ID Journal Published Year Pages File Type
520371 Journal of Computational Physics 2010 20 Pages PDF
Abstract

Motivated by the locomotion of flagellated micro-organisms and by recent experiments of chemically driven nanomachines, we study the dynamics of bodies of simple geometric shape that are propelled by specified tangential surface stresses. We develop a mathematical description of the body dynamics based on a mixed-type boundary integral formulation. We also derive analytic axisymmetric solutions for the case of a single locomoting sphere and ellipsoid based on spherical and ellipsoidal harmonics, and compare our numerical results to these. The hydrodynamic interactions between two spherical and ellipsoidal swimmers in an infinite fluid are then simulated using second-order accurate spatial and temporal discretizations. We find that the near-field interactions result in complex and interesting changes in the locomotors’ orientations and trajectories. Stable as well as unstable pairwise swimming motions are observed, similar to the recent findings of Pooley et al. [C.M. Pooley, G.P. Alexander, J.M. Yeomans, Hydrodynamic interaction between two swimmers at low Reynolds number, Phys. Rev. Lett. 99 (2007) 228103].

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,