Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
520430 | Journal of Computational Physics | 2008 | 14 Pages |
A finite element solution procedure is presented for accurately computing time-harmonic acoustic scattering by elastic targets buried in sediment. An improved finite element discretization based on trilinear basis functions leading to fourth-order phase accuracy is described. For sufficiently accurate discretizations 100 million to 1 billion unknowns are required. The resulting systems of linear equations are solved iteratively using the GMRES method with a domain decomposition preconditioner employing a fast direct solver. Due to the construction of the discretization and preconditioner, iterations can be reduced onto a sparse subspace associated with the interfaces. Numerical experiments demonstrate capability to evaluate the scattered field with hundreds of wavelengths.