Article ID Journal Published Year Pages File Type
520430 Journal of Computational Physics 2008 14 Pages PDF
Abstract

A finite element solution procedure is presented for accurately computing time-harmonic acoustic scattering by elastic targets buried in sediment. An improved finite element discretization based on trilinear basis functions leading to fourth-order phase accuracy is described. For sufficiently accurate discretizations 100 million to 1 billion unknowns are required. The resulting systems of linear equations are solved iteratively using the GMRES method with a domain decomposition preconditioner employing a fast direct solver. Due to the construction of the discretization and preconditioner, iterations can be reduced onto a sparse subspace associated with the interfaces. Numerical experiments demonstrate capability to evaluate the scattered field with hundreds of wavelengths.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,