Article ID Journal Published Year Pages File Type
520494 Journal of Computational Physics 2013 22 Pages PDF
Abstract

A computational scheme for solving 2D Laplace boundary-value problems using rational functions as the basis functions is described. The scheme belongs to the class of desingularized methods, for which the location of singularities and testing points is a major issue that is addressed by the proposed scheme, in the context he 2D Laplace equation. Well-established rational-function fitting techniques are used to set the poles, while residues are determined by enforcing the boundary conditions in the least-squares sense at the nodes of rational Gauss–Chebyshev quadrature rules. Numerical results show that errors approaching the machine epsilon can be obtained for sharp and almost sharp corners, nearly-touching boundaries, and almost-singular boundary data. We show various examples of these cases in which the method yields compact solutions, requiring fewer basis functions than the Nyström method, for the same accuracy. A scheme for solving fairly large-scale problems is also presented.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,