Article ID Journal Published Year Pages File Type
520544 Journal of Computational Physics 2008 13 Pages PDF
Abstract

We present a lattice-Boltzmann method coupled with an immersed boundary technique for the simulation of bluff body flows. The lattice-Boltzmann method for the modeling of the Navier–Stokes equations, is enhanced by a forcing term to account for the no-slip boundary condition on a non-grid conforming boundary. We investigate two alternatives of coupling the boundary forcing term with the grid nodes, namely the direct and the interpolated forcing techniques. The present LB–IB methods are validated in simulations of the incompressible flow past an impulsively started cylinder at low and moderate Reynolds numbers. We present diagnostics such as the near wall vorticity field and the drag coefficient and comparisons with previous computational and experimental works and assess the advantages and drawbacks of the two techniques.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,