Article ID Journal Published Year Pages File Type
520563 Journal of Computational Physics 2013 16 Pages PDF
Abstract

The physalis method was designed for the simulation of flows with suspended spherical particles. It differs from standard immersed boundary methods due to the use of a local spectral representation of the solution in the neighborhood of each particle, which is used to bridge the gap between the particle surface and the underlying fixed Cartesian grid. This analytic solution involves coefficients which are determined by matching with the finite-difference solution farther away from the particle. In the original implementation of the method this step was executed by solving an over-determined linear system via the singular-value decomposition. Here a more efficient method to achieve the same end is described. The basic idea is to use scalar products of the finite-difference solution with spherical harmonic functions taken over a spherical surface concentric with the particle. The new approach is tested on a number of examples and is found to posses a comparable accuracy to the original one, but to be significantly faster and to require less memory. A novel test case that we describe demonstrates the accuracy with which the method conserves the fluid angular momentum in the case of a rotating particle.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,