Article ID Journal Published Year Pages File Type
520691 Journal of Computational Physics 2011 12 Pages PDF
Abstract

Meshless methods based on compact radial basis functions (RBFs) are proposed for modelling photonic crystals (PhCs). When modelling two-dimensional PhCs two generalised eigenvalue problems are formed, one for the transverse-electric (TE) mode and the other for the transverse-magnetic (TM) mode. Conventionally, the Band Diagrams for two-dimensional PhCs are calculated by either the plane wave expansion method (PWEM) or the finite element method (FEM). Here, the eigenvalue equations for the two-dimensional PhCs are solved using RBFs based meshless methods. For the TM mode a meshless local strong form method (RBF collocation) is used, while for the tricker TE mode a meshless local weak form method (RBF Galerkin) is used (so that the discontinuity of the dielectric function ϵ(x)ϵ(x) can naturally be modelled). The results obtained from the meshless methods are found to be in good agreement with the standard PWEM. Thus, the meshless methods are proved to be a promising scheme for predicting photonic band gaps.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,