Article ID Journal Published Year Pages File Type
520707 Journal of Computational Physics 2012 7 Pages PDF
Abstract

Many combustion models that are based on the flamelet paradigm employ a reaction progress variable. While such a progress variable is well defined for one-step reaction kinetics, this is typically not the case for complex chemical mechanisms. Consequently, several expressions for a progress variable have been utilized. In this paper a formal method for the generation of a reaction progress variable is proposed that is optimal with respect to a set of constraints. The potential of the method is demonstrated in applications to partially premixed and diffusion flames, and the extension to premixed combustion is discussed. It is shown that the proposed method can lead to significant improvements in the definition of an optimal progress variable over conventional formulations, essentially eliminating the expert knowledge previously required in identifying such quantities.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,