Article ID Journal Published Year Pages File Type
521081 Journal of Computational Physics 2010 17 Pages PDF
Abstract

The article discusses components and performance of an algebraic multigrid (AMG) preconditioner for the fully coupled multi-ion transport and reaction model (MITReM) with nonlinear boundary conditions, important for electrochemical modeling. The governing partial differential equations (PDEs) are discretized in space by a combined finite element and residual distribution method. Solution of the discrete system is obtained by means of a Newton-based nonlinear solver, and an AMG-preconditioned BICGSTAB Krylov linear solver. The presented AMG preconditioner is based on so-called point-based classical AMG. The linear solver is compared to a standard direct and several one-level iterative solvers for a range of geometries and chemical systems with scientific and industrial relevance. The results indicate that point-based AMG methods, carefully designed, are an attractive alternative to more commonly employed numerical methods for the simulation of complex electrochemical processes.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,