Article ID Journal Published Year Pages File Type
521103 Journal of Computational Physics 2008 15 Pages PDF
Abstract

We describe a particle position time advancement algorithm that is designed for use with several subgrid velocity reconstruction schemes used in LES/FDF methods, and potentially in other applications. These reconstruction schemes yield a subgrid velocity field with desirable divergence properties, but also with discontinuities across cell faces. Therefore, a conventional time advancement algorithm, such as second-order Runge–Kutta (RK2), does not perform as well as it does with a smooth velocity field. The algorithm that we describe, called Multi-Step RK2 (MRK2), builds upon RK2 by breaking up the time step into two or more substeps whenever a particle crosses one or more velocity discontinuities. When used in conjunction with the parabolic edge reconstruction method, MRK2 performs considerably better than RK2: both the final position of an advected particle, and the final area of a 2D infinitesimal area element are second-order accurate in time (as opposed to first-order accurate for RK2). Furthermore, MRK2 has the theoretical advantage that it better preserves the continuity of the mapping between initial and final particle positions.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,