Article ID Journal Published Year Pages File Type
521219 Journal of Computational Physics 2008 28 Pages PDF
Abstract

We consider several systems of nonlinear hyperbolic conservation laws describing the dynamics of nonlinear waves in presence of phase transition phenomena. These models admit under-compressive shock waves which are not uniquely determined by a standard entropy criterion but must be characterized by a kinetic relation. Building on earlier work by LeFloch and collaborators, we investigate the numerical approximation of these models by high-order finite difference schemes, and uncover several new features of the kinetic function associated with physically motivated second and third-order regularization terms, especially viscosity and capillarity terms.On one hand, the role of the equivalent equation associated with a finite difference scheme is discussed. We conjecture here and demonstrate numerically that the (numerical) kinetic function associated with a scheme approaches the (analytic) kinetic function associated with the given model – especially since its equivalent equation approaches the regularized model at a higher order. On the other hand, we demonstrate numerically that a kinetic function can be associated with the thin liquid film model and the generalized Camassa–Holm model. Finally, we investigate to what extent a kinetic function can be associated with the equations of van der Waals fluids, whose flux-function admits two inflection points.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,