Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
521303 | Journal of Computational Physics | 2010 | 22 Pages |
In this paper, the behavior of shock-capturing methods in Lagrangian coordinate is investigated. The relation between viscous shock and inviscid one is analyzed quantitatively, and the procedure of a viscous shock formation and propagation with a jump type initial data is described. In general, a viscous shock profile and a discontinuous one include different energy and momentum, and these discrepancies result in the generation of waves in all families when a single wave Riemann problem (shock or rarefaction) is solved. Employing this method, some anomalous behavior, such as, viscous shock interaction, shock passing through ununiform grids, postshock oscillations and lower density phenomenon is explained well. Using some classical schemes to solve the inviscid flow in Lagrangian coordinate may be not adequate enough to correctly describe flow motion in the discretized space. Partial discrepancies between von Neumann artificial viscosity method and Godunov method are exhibited. Some reviews are given to those methods which can ameliorate even eliminate entropy errors. A hybrid scheme based on the understanding to the behavior of viscous solution is proposed to suppress the overheating error.