Article ID Journal Published Year Pages File Type
521345 Journal of Computational Physics 2010 23 Pages PDF
Abstract

This paper introduces a novel symplectic wavelet collocation method for solving nonlinear Hamiltonian wave equations. Based on the autocorrelation functions of Daubechies compactly supported scaling functions, collocation method is conducted for the spatial discretization, which leads to a finite-dimensional Hamiltonian system. Then, appropriate symplectic scheme is employed for the integration of the Hamiltonian system. Under the hypothesis of periodicity, the properties of the resulted space differentiation matrix are analyzed in detail. Conservation of energy and momentum is also investigated. Various numerical experiments show the effectiveness of the proposed method.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,