Article ID Journal Published Year Pages File Type
521368 Journal of Computational Physics 2007 22 Pages PDF
Abstract

Being implicit in time, the space-time discontinuous Galerkin discretization of the compressible Navier–Stokes equations requires the solution of a non-linear system of algebraic equations at each time-step. The overall performance, therefore, highly depends on the efficiency of the solver. In this article, we solve the system of algebraic equations with a h-multigrid method using explicit Runge–Kutta relaxation. Two-level Fourier analysis of this method for the scalar advection–diffusion equation shows convergence factors between 0.5 and 0.75. This motivates its application to the 3D compressible Navier–Stokes equations where numerical experiments show that the computational effort is significantly reduced, up to a factor 10 w.r.t. single-grid iterations.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,