Article ID Journal Published Year Pages File Type
521384 Journal of Computational Physics 2007 24 Pages PDF
Abstract

A model for the simulation of the electron energy distribution in nanoscale metal–oxide–semiconductor field-effect transistor (MOSFET) devices, using a kinetic simulation technique, is implemented. The convective scheme (CS), a method of characteristics, is an accurate method of solving the Boltzmann transport equation, a nonlinear integrodifferential equation, for the distribution of electrons in a MOSFET device. The method is used to find probabilities for use in an iterative scheme which iterates to find collision rates in cells. The CS is also a novel approach to 2D semiconductor device simulation. The CS has been extended to handle boundary conditions in 2D as well as to calculation of polygon overlap for polygons of more than three sides. Electron energy distributions in the channel of a MOSFET are presented.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,