Article ID Journal Published Year Pages File Type
521388 Journal of Computational Physics 2007 17 Pages PDF
Abstract

We consider the time-dependent one-dimensional nonlinear Schrödinger equation with pointwise singular potential. By means of spectral splitting methods we prove that the evolution operator is approximated by the Lie evolution operator, where the kernel of the Lie evolution operator is explicitly written. This result yields a numerical procedure which is much less computationally expensive than multi-grid methods previously used. Furthermore, we apply the Lie approximation in order to make some numerical experiments concerning the splitting of a soliton, interaction among solitons and blow-up phenomenon.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
,