Article ID Journal Published Year Pages File Type
521434 Journal of Computational Physics 2013 16 Pages PDF
Abstract

We compare different block preconditioners in the context of parallel time adaptive higher order implicit time integration using Jacobian-free Newton–Krylov (JFNK) solvers for discontinuous Galerkin (DG) discretizations of the three dimensional time dependent Navier–Stokes equations. A special emphasis of this work is the performance for a relative high number of processors, i.e. with a low number of elements on the processor. For high order DG discretizations, a particular problem that needs to be addressed is the size of the blocks in the Jacobian. Thus, we propose a new class of preconditioners that exploits the hierarchy of modal basis functions and introduces a flexible order of the off-diagonal Jacobian blocks. While the standard preconditioners ‘block Jacobi’ (no off-blocks) and full symmetric Gauss–Seidel (full off-blocks) are included as special cases, the reduction of the off-block order results in the new scheme ROBO-SGS. This allows us to investigate the impact of the preconditioner’s sparsity pattern with respect to the computational performance. Since the number of iterations is not well suited to judge the efficiency of a preconditioner, we additionally consider CPU time for the comparisons. We found that both block Jacobi and ROBO-SGS have good overall performance and good strong parallel scaling behavior.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,