Article ID Journal Published Year Pages File Type
521456 Journal of Computational Physics 2010 33 Pages PDF
Abstract

This paper presents an accurate approach to simulate the sonic boom of supersonic aircrafts. The near-field flow is modeled by the conservative Euler equations and is solved using a vertex-centered finite volume approach on adapted unstructured tetrahedral meshes. A metric-based anisotropic mesh adaptation is considered to control the interpolation error in LpLp norm. Then, from the CFD solution, the pressure distribution under the aircraft is extracted and used to set up the initial conditions of the propagation algorithm in the far-field. The pressure distribution is propagated down to the ground in order to obtain the sonic boom signature using a ray tracing algorithm based upon the Thomas waveform parameter method. In this study, a sonic boom sensitivity analysis is carried out on several aircraft designs (low-drag and low-boom shapes).

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,