Article ID Journal Published Year Pages File Type
521607 Journal of Computational Physics 2006 33 Pages PDF
Abstract

For the time integration of edge finite element discretizations of the three-dimensional Maxwell equations, we consider the Gautschi cosine scheme where the action of the matrix function is approximated by a Krylov subspace method. First, for the space-discretized edge finite element Maxwell equations, the dispersion error of this scheme is analyzed in detail and compared to that of two conventional schemes. Second, we show that the scheme can be implemented in such a way that a higher accuracy can be achieved within less computational time (as compared to other implicit schemes). We also analyzed the error made in the Krylov subspace matrix function evaluations. Although the new scheme is unconditionally stable, it is explicit in structure: as an explicit scheme, it requires only the solution of linear systems with the mass matrix.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,