Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
521646 | Journal of Computational Physics | 2009 | 15 Pages |
We introduce a preconditioner for the solution of the Bidomain system governing the propagation of action potentials in the myocardial tissue. The Bidomain model is a degenerate parabolic set of nonlinear reaction-diffusion equations. The nonlinear term describes the ion flux at the cellular level. The degenerate nature of the problem results in a severe ill conditioning of its discretization. Our preconditioning strategy is based on a suitable adaptation of the Monodomain model, a simplified version of the Bidomain one, which is by far simpler to solve, nevertheless is unable to capture significant features of the action potential propagation. The Monodomain preconditioner application to a non-symmetric formulation of the Bidomain system results at the algebraic level in a lower block-triangular preconditioner. We prove optimality of the preconditioner with respect to the mesh size, and corroborate our theoretical results with 3D numerical simulations both on idealized and real ventricle geometries.