Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
521832 | Journal of Computational Physics | 2009 | 23 Pages |
We construct an iterative algorithm for the solution of forward scattering problems in two dimensions. The scheme is based on the combination of high-order quadrature formulae, fast application of integral operators in Lippmann–Schwinger equations, and the stabilized bi-conjugate gradient method (BI-CGSTAB). While the FFT-based fast application of integral operators and the BI-CGSTAB for the solution of linear systems are fairly standard, a large part of this paper is devoted to constructing a class of high-order quadrature formulae applicable to a wide range of singular functions in two and three dimensions; these are used to obtain rapidly convergent discretizations of Lippmann–Schwinger equations. The performance of the algorithm is illustrated with several numerical examples.