Article ID Journal Published Year Pages File Type
522041 Journal of Computational Physics 2011 23 Pages PDF
Abstract

This work presents a family of original Runge–Kutta methods specifically designed to be effective relaxation schemes in the numerical solution of the steady state solution of purely advective problems with a high-order accurate discontinuous Galerkin space discretization and a p-multigrid solution algorithm. The design criterion for the construction of the Runge–Kutta methods here developed is different form the one traditionally used to derive optimal Runge–Kutta smoothers for the h-multigrid algorithm, which are designed in order to provide a uniform damping of the error modes in the high-frequency range only. The method here proposed is instead designed in order to provide a variable amount of damping of the error modes over the entire frequency spectrum. The performance of the proposed schemes is assessed in the solution of the steady state quasi one-dimensional Euler equations for two test cases of increasing difficulty. Some preliminary results showing the performance for multidimensional applications are also presented.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,