Article ID Journal Published Year Pages File Type
522075 Journal of Computational Physics 2008 15 Pages PDF
Abstract

A variant of the filter-diagonalization method, using targeted excitation to filter out unwanted modes, can extract exactly or nearly degenerate eigenmodes and frequencies from time-domain simulations. Excitation provides a particularly simple way to produce filtered states with already-existing time-domain simulations, while requiring minimal storage space. Moreover, using broader excitations that cover the entire range of desired frequencies requires just one-fifth as much computation as using narrow excitations. With this method, almost any time-domain code can be easily turned into an efficient eigenmode solver with little or no change to the code. To distinguish M degenerate modes requires running at least M different simulations, so the computational effort is proportional to the size of the degeneracy, no matter how closely-spaced the modes; however, from those M simulations many other non-degenerate modes can also be extracted with high accuracy, without much extra effort. This method allows relatively simple FDTD algorithms to compete with frequency-domain solvers, offering advantages of simplicity, flexibility and ease of implementation; also, it scales to very large problems and massively parallel computation, and it can be used to extract high-frequency modes without first having to identify lower-frequency modes. The accuracy of this method is demonstrated by finding eigenmodes and frequencies of an electromagnetic resonant cavity.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,