Article ID Journal Published Year Pages File Type
522090 Journal of Computational Physics 2011 15 Pages PDF
Abstract

Metric tensors play a key role to control the generation of unstructured anisotropic meshes. In practice, the most well established error analysis enables to calculate a metric tensor on an element basis. In this paper, we propose to build a metric field directly at the nodes of the mesh for a direct use in the meshing tools. First, the unit mesh metric is defined and well justified on a node basis, by using the statistical concept of length distribution tensors. Then, the interpolation error analysis is performed on the projected approximate scalar field along the edges. The error estimate is established on each edge whatever the dimension is. It enables to calculate a stretching factor providing a new edge length distribution, its associated tensor and the corresponding metric. The optimal stretching factor field is obtained by solving an optimization problem under the constraint of a fixed number of edges in the mesh. Several examples of interpolation error are proposed as well as preliminary results of anisotropic adaptation for interface and free surface problem using a level set method.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
,