Article ID Journal Published Year Pages File Type
522205 Journal of Computational Physics 2008 23 Pages PDF
Abstract

An efficient implementation of the high-order spectral volume (SV) method is presented for multi-dimensional conservation laws on unstructured grids. In the SV method, each simplex cell is called a spectral volume (SV), and the SV is further subdivided into polygonal (2D), or polyhedral (3D) control volumes (CVs) to support high-order data reconstructions. In the traditional implementation, Gauss quadrature formulas are used to approximate the flux integrals on all faces. In the new approach, a nodal set is selected and used to reconstruct a high-order polynomial approximation for the flux vector, and then the flux integrals on the internal faces are computed analytically, without the need for Gauss quadrature formulas. This gives a significant advantage over the traditional SV method in efficiency and ease of implementation. For SV interfaces, a quadrature-free approach is compared with the Gauss quadrature approach to further evaluate the accuracy and efficiency. A simplified treatment of curved boundaries is also presented that avoids the need to store a separate reconstruction for each boundary cell. Fundamental properties of the new SV implementation are studied and high-order accuracy is demonstrated for linear and non-linear advection equations, and the Euler equations. Several well known inviscid flow test cases are utilized to show the effectiveness of the simplified curved boundary representation.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,