Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
522281 | Journal of Computational Physics | 2007 | 27 Pages |
Abstract
We present a finite element approximation of motion by minus the Laplacian of curvature and related flows. The proposed scheme covers both the closed curve case, and the case of curves that are connected via triple junctions. On introducing a parametric finite element approximation, we prove stability bounds and compare our scheme with existing approaches. It turns out that the new scheme has very good properties with respect to area conservation and the equidistribution of mesh points. We state also an extension of our scheme to Willmore flow of curves and discuss possible further generalizations.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
John W. Barrett, Harald Garcke, Robert Nürnberg,