Article ID Journal Published Year Pages File Type
522398 Journal of Computational Physics 2010 20 Pages PDF
Abstract

This work is devoted to the design of multi-dimensional finite volume schemes for solving transport equations on unstructured grids. In the framework of MUSCL vertex-based methods we construct numerical fluxes such that the local maximum property is guaranteed under an explicit Courant–Friedrichs–Levy condition. The method can be naturally completed by adaptive local mesh refinements and it turns out that the mesh generation is less constrained than when using the competitive cell-centered methods. We illustrate the effectiveness of the scheme by simulating variable density incompressible viscous flows. Numerical simulations underline the theoretical predictions and succeed in the computation of high density ratio phenomena such as a water bubble falling in air.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,