Article ID Journal Published Year Pages File Type
522530 Journal of Computational Physics 2007 30 Pages PDF
Abstract

Conservation laws in axisymmetric geometries are discretized for the first time according to the node-pair framework of Selmin [Comput. Methods Appl. Mech. Eng. 102 (1993) 107–138]. A relation is found linking the node-pair finite element discretization to the finite volume scheme, opening the way to the use of standard finite volume stabilization techniques and high-resolution schemes in the computation of axisymmetric problems. By construction, the treatment of the axis is naturally built-in inside the basic structural elements of the spatial discretization. Numerical results are presented and compared to the exact solution for scalar advection in a source flow, considering both continuous and discontinuous initial profiles. Numerical simulations of compressible flows include the complex dynamical interaction and propagation of waves in a shock-tube experiment and the steady flow at the exit of under-expanded and sonic nozzles. Numerical results are found to agree fairly well with experimental data, demonstrating the validity of the proposed approach.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,