Article ID Journal Published Year Pages File Type
522864 Journal of Computational Physics 2007 26 Pages PDF
Abstract

In this paper, we present a new linear system solver for use in a fully-implicit ocean model. The new solver allows to perform bifurcation analysis of relatively high-resolution primitive-equation ocean-climate models. It is based on a block-ILU approach and takes special advantage of the mathematical structure of the governing equations. In implicit models Jacobian matrices have to be constructed. Analytical construction is hard for complicated but more realistic representations of mixing. This is overcome by evaluating the Jacobian in part numerically. The performance of the new implicit ocean model is demonstrated using (i) a high-resolution model of the wind-forced double-gyre flow problem in a (relatively small) midlatitude spherical basin, and (ii) a medium-resolution model of thermohaline and wind-driven flows in an Atlantic size single-hemispheric basin.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,