Article ID Journal Published Year Pages File Type
522964 Journal of Computational Physics 2007 26 Pages PDF
Abstract

This study investigates the numerical solution of viscoelastic flows using two contrasting high-order finite volume schemes. We extend our earlier work for Poiseuille flow in a planar channel and the single equation form of the extended pom–pom (SXPP) model [M. Aboubacar, J.P. Aguayo, P.M. Phillips, T.N. Phillips, H.R. Tamaddon-Jahromi, B.A. Snigerev, M.F. Webster, Modelling pom–pom type models with high-order finite volume schemes, J. Non-Newtonian Fluid Mech. 126 (2005) 207–220], to determine steady-state solutions for planar 4:1 sharp contraction flows. The numerical techniques employed are time-stepping algorithms: one of hybrid finite element/volume type, the other of pure finite volume form. The pure finite volume scheme is a staggered-grid cell-centred scheme based on area-weighting and a semi-Lagrangian formulation. This may be implemented on structured or unstructured rectangular grids, utilising backtracking along the solution characteristics in time. For the hybrid scheme, we solve the momentum-continuity equations by a fractional-staged Taylor–Galerkin pressure-correction procedure and invoke a cell-vertex finite volume scheme for the constitutive law. A comparison of the two finite volume approaches is presented, concentrating upon the new features posed by the pom–pom class of models in this context of non-smooth flows. Here, the dominant feature of larger shear and extension in the entry zone influences both stress and stretch, so that larger stretch develops around the re-entrant corner zone as Weissenberg number increases, whilst correspondingly stress levels decline.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , , ,