Article ID Journal Published Year Pages File Type
522993 Journal of Computational Physics 2006 22 Pages PDF
Abstract

The space–time discontinuous Galerkin discretization of the compressible Navier–Stokes equations results in a non-linear system of algebraic equations, which we solve with pseudo-time stepping methods. We show that explicit Runge–Kutta methods developed for the Euler equations suffer from a severe stability constraint linked to the viscous part of the equations and propose an alternative to relieve this constraint while preserving locality. To evaluate its effectiveness, we compare with an implicit–explicit Runge–Kutta method which does not suffer from the viscous stability constraint. We analyze the stability of the methods and illustrate their performance by computing the flow around a 2D airfoil and a 3D delta wing at low and moderate Reynolds numbers.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,