Article ID Journal Published Year Pages File Type
523042 Journal of Computational Physics 2006 15 Pages PDF
Abstract

A new finite element Poisson solver is developed and applied to a global gyrokinetic toroidal code (GTC) which employs the field aligned mesh and thus a logically non-rectangular grid in a general geometry. Employing test cases where the analytical solutions are known, the finite element solver has been verified. The CPU time scaling versus the matrix size employing portable, extensible toolkit for scientific computation (PETSc) to solve the sparse matrix is promising. Taking the ion temperature gradient modes (ITG) as an example, the solution from the new finite element solver has been compared to the solution from the original GTC’s iterative solver which is only efficient for adiabatic electrons. Linear and nonlinear simulation results from the two different forms of the gyrokinetic Poisson equation (integral form and the differential form) coincide each other. The new finite element solver enables the implementation of advanced kinetic electron models for global electromagnetic simulations.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,